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Abstract. Single two dimensional polymers confined to a strip are studied by Monte Carlo simulations.
They are described by N-step self-avoiding random walks on a square lattice between two parallel hard
walls with distance 1 � D � Nν (ν = 3/4 is the Flory exponent). For the simulations we employ the
pruned-enriched-Rosenbluth method (PERM) with Markovian anticipation. We measure the densities of
monomers and of end points as functions of the distance from the walls, the longitudinal extent of the
chain, and the forces exerted on the walls. Their scaling with D and the universal ratio between force and
monomer density at the wall are compared to theoretical predictions.

PACS. 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling – 07.05.Tp Computer
modeling and simulation – 61.41.+e Polymers, elastomers, and plastics

1 Introduction

The behaviour of flexible polymers in a good solvent con-
fined to different geometries and in the presence of walls
or other obstacles have been studied for many years [1,2].
A particularly simple geometry is the space between two
parallel walls. For simplicity we shall only discuss here the
case of walls without energetic effects, i.e. the walls play
a purely geometric role.

An important theoretical prediction is that near such a
wall the monomer density profile increases as z1/ν , where z
is the distance from the wall (z � D, and D is the width
between the two parallel walls) and ν is the Flory expo-
nent [1]. This should hold in any dimension of space d.
On the other hand it is intuitively obvious that the force
exerted by the polymer onto the wall is proportional to
the monomer density near the wall. The ratio between
the two can be expressed in terms of a universal ampli-
tude ratio which has been calculated by Eisenriegler [3]
(using conformal invariance results of Cardy et al. [4]) in
d = 2, and in any d ≤ 4 by Eisenriegler [5] by means of an
ε-expansion. Attempts to verify these detailed predictions
by Monte Carlo simulations in three dimensions [6–9] have
so far been without very convincing results. As far as we
know, no attempt was made yet to verify them in d = 2,
and that is where the present paper sets in.

We study single polymer chains confined to a 2-d strip.
They are described by self-avoiding random walks (SAWs)
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Fig. 1. Schematic drawing of a polymer chain growing inside
a strip, and with an additional wall added at x = 0. Monomers
are only allowed at lattice sites x > 0 and 1 ≤ y ≤ D.

of N steps on a square lattice between two hard walls
with distance D as shown in Figure 1. More precisely,
monomers are supposed to sit on lattice sites and D is the
number of rows accessible to monomers, i.e. the walls are
placed at y = 0 and at y = D + 1, and the monomers can
be at y = 1, . . .D. We only consider the case where the
Flory radius of a free chain of length N , RF ≈ Nν , is much
larger than D. When using a chain growth algorithm, the
polymer has then to grow , after a short initial phase of
∼ D1/ν steps, in either the positive or negative x-direction
without possibility to change its orientation. This allows
us to use an additional wall at x < x0 which forces all
chains to grow into the positive x-direction. For N � D1/ν

this will essentially reduce the partition sum by a constant
factor, without affecting any of the scaling laws or any of
the detailed comparisons with theoretical predictions. On
the other hand, it simplifies the subsequent discussion.
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The force exerted onto the wall is most straightfor-
wardly expressed in terms of the work done when moving
one of the walls, i.e. by the dependence of the free energy
– and thus also of the partition sum – on D,

F = kBT
∂ ln ZN

∂D
, (1)

where we have introduced a dummy temperature T which
can take any positive value. The partition sum ZN is just
the number of N -step SAWs in the strip starting from a
given x, but summed over all values 1 ≤ y0 ≤ D of the
y-component of the starting point.

The partition sum of a free SAW in infinite volume
scales for N → ∞ as ZN = µ−N∞ Nγ−1 with µ∞ being the
critical fugacity per monomer, and with γ = 43/32 being
a universal exponent. In contrast, the partition function
on a strip scales as

ZN ∼ µ−N
D , (2)

without the power correction and with µD scaling for
large D as

µD − µ∞ ≈ aD−1/ν . (3)

with a being a non-universal amplitude. The force per
monomer is then obtained as

f = F/N ∼ kBT D−1−1/ν . (4)

Standard fixed-length Markov Chain Monte Carlo sim-
ulations do not give estimates of the partition sum or of
the free energy, so that equations (1–4) cannot be used
directly. This has led to algorithms specifically designed
for estimation of forces [10], but employing the pruned-
enriched-Rosenbluth method (PERM) [11] one can use
equations (1–4) directly.

Using PERM with k-step Markovian anticipa-
tion [12–14], we measured the partition sum directly and
estimated the dependence of the monomer fugacity on the
width D. In the same simulations also the monomer den-
sity profile, the end-to-end distance along the strip, and
the density profile of chain ends are measured.

Details of the simulation method are given in the next
section, results and their comparison with theoretical pre-
dictions are discussed in Section 3.

2 Algorithm: PERM with k-step Markovian
anticipation

PERM [11] is a chain growth algorithm with population
control. Polymer chains are built like random walks by
adding one monomer at each step. We use a Rosenbluth
like bias for self-avoidance. As usual, this bias is compen-
sated by a weight factor [15], i.e. each sample configuration
should be given a weight. But actually we use a stronger
bias which in addition suppresses dense configurations and
samples more finely relatively open chain configurations,
called Markovian anticipation in [13].

In k-step Markovian anticipation, we let the additional
bias in the next step depend on the last k steps made
before. Let us denote the 2d directions on a d-dimensional
hypercubic lattice by s = 0, . . . , 2d−1. All possible (k+1)-
step configurations (k previous steps i = −1,−2, . . . − k
plus one future step i = 0) are then indexed by

S = (s−k, . . . , s0) = (s, s0) . (5)

In addition, choose an integer m ≈ 100 (the precise value
is not important). Either during an auxiliary run or dur-
ing the early stages of the present run, we obtained a his-
togram Hm such that Hm(S) is the accumulated weight
at chain length n+m of those chains which had configura-
tion S during steps n− k, n− k+1, . . . n. Since we sample
uniformly, H0(S) is independent of S. Thus Hm(S) with
m > 0 indicates how “successful” is a configuration S af-
ter m more steps. In importance sampling we want each
chosen direction to have in average the same later success.
Therefore we choose the next step with probability

p(s0|s) =
Hm(s, s0)

∑2d−1
s′
0=0 Hm(s, s′0)

. (6)

In our simulations we choose k = 9 and m = 100. We
accumulate contributions to H only for n + m > 300, and
we apply equation (6) only for chain lengths > k (for chain
lengths < k there is not yet enough history to condition
upon).

Accumulating the histogram only for n � 1 is sug-
gested by the fact that only for large n the anisotropic
bias is fully developed [13]. This anisotropy makes the
histogram strongly dependent on D. We found that us-
ing for all D only the histogram obtained for free chains,
i.e. for D = ∞, gives nearly the same efficiency. This is
quite different from the case where the anisotropy is not
due to geometry, but is due to stretching of the polymer.
In the latter case, simulations with Markovian anticipa-
tion become much more efficient with increased stretch-
ing [16]. This is not the case for the present problem where
the anisotropy is due to geometric constraints, for which
PERM with Markovian anticipation is however still the
most efficient known simulation method by far.

3 Results

Before presenting our results, let us stress that we have
several possibilities for checking our algorithm. For very
large D we can compare our estimates of µ with the very
precise estimate µ∞ = 0.37905228 [17,18]. For D ≤ 11
we can compare with exact transfer matrix calculations
of [19]. And for D ≤ 2 we can even solve the problem
analytically.

For D = 1, the polymer can only grow in a straight
configuration, giving µ(D=1) = 1. For D = 2, each step
can be either up (u), down (d), or to the right (r). After
an ‘u’ or ‘d’ move, the next step has to be ‘r’, while any
move is possible after ‘r’. Lumping moves ‘u’ and ‘d’ to-
gether into a vertical move (‘v’), we see that the set of all



H.-P. Hsu and P. Grassberger: 2-Dimensional polymers confined in a strip 211

A Bv

r

r
Fig. 2. Graph accepting the regular grammar of vertical (‘v’)
and right (‘r’) moves for D = 2. The node labelled ‘A’ is the
start node [20]. If one wants to distinguish also between ‘u’ and
‘d’ moves, the graph is somewhat more complicated and con-
tains also a transient part. This is skipped here for simplicity.

possible configurations forms a regular language [20] with
the associated graph shown in Figure 2. The partition sum
for chains of length N is just twice the (N +1)st Fibonacci
number,

ZN (D = 2) = 2FN+1 (N ≥ 1) , (7)

where F0 = F1 = 1 and FN = FN−1 + FN−2. Thus the
critical monomer fugacity for D = 2 is the inverse of the
golden mean,

µD=2 = g−1 ≡
√

5 − 1
2

= 0.61803 . . . (8)

In this case, we can also show that Markovian anticipa-
tion gives the optimal bias. Markovian anticipation corre-
sponds in this case to pr : pv = g : 1 if a vertical move
is allowed, and pr : pv = 1 : 0 else. This choice leads to
weights which oscillate between two values, thus no pop-
ulation control (pruning/cloning) is needed [21]. All this
is verified in our simulations, which serves thus as a test
for our algorithms.

For D > 2, we used simulations. We simulated strip
widths up to D = 320 and chain length between N = 3000
(for D = 2) and N = 125, 000 (for D = 320). Critical
fugacities are determined by plotting ZNµN

D against log N
and demanding that these curves become horizontal for
large N . Results are shown in Figure 3, where we plot
µD − µ∞ with µ∞ = 0.37905228 [18]. They are in perfect
agreement with the theoretical prediction of equation (3),
and provide the estimate a = 0.7365±0.0007. In addition,
µD can be compared for D = 3 to 12 with the transfer
matrix results of [19]. For all D, the values agree for at
least six digits.

As we said in the introduction, we expect the force f
onto the wall to be proportional to the monomer density
ρ(y) near the wall. The precise relation is given by Eisen-
riegler [5]

lim
y→0

k
ρ(y)
y1/ν

= B
f

kBT
. (9)

Here the non-universal amplitude k relates the end-to-end
distance of a free SAW to the chain length, k = R

1/ν
x /N =

0.5297 ± 0.0002 [22] for the square lattice. On the other
hand, B is a universal number. For ideal chains B = 2,
while for chains with excluded volume in 4− ε dimensions
one has B ≈ 2(1 − b1ε) with b1 = 0.075 [5]. The latter is

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000

µ D
-µ

∞

D

Fig. 3. Log-log plot of µD − µ∞ against D. The dashed line
is µD −µ∞ = 0.737D−1/ν with ν = 3/4, as predicted by equa-
tion (3).

of course of dubious value for d = 2 (where it would give
B ≈ 1.7), but conformal invariance leads to the suppos-
edly exact value B = 2.01 in d = 2 [3,4].

The monomer density is normalized such that
∑D

y=1 ρ(y) = 1. According to equation (9) it should scale
as y1/ν near the walls (this holds in any dimension) with
ν = 3/4. Surprisingly, we found that the simplest ansatz
generalizing this power law to all y ∈ [1, D],

ρ(y) =
1

D + 1
fρ(ξ) ≡ 1

D + 1
A(ξ(1 − ξ))4/3 , ξ =

y

D + 1
,

(10)
with A = Γ (14/3)/Γ 2(7/3) = 10.38 gives already an ex-
cellent fit (Fig. 4a) in the limit D → ∞. There are small
deviations invisible in Figure 4a but clearly seen when
plotting ρ(y)/fρ(ξ) (see Fig. 4b), but they seem to vanish
slowly in the limit D → ∞ (see Fig. 4b).

Assuming the latter, i.e. assuming that equation (10)
becomes exact asymptotically, the universal number B
could be estimated by using equations (1, 2, 3), and (9)
which together would give

A = lim
D→∞

lim
y→0

D7/3ρ(y)
y4/3

=
4
3

Ba

kµ∞
. (11)

Inserting the above numbers gives B = 2.122±0.002 which
is definitely larger than the value predicted in [3,4], by
some 50 standard deviations.

In an alternative scenario we could assume that the
deviations from equation (10) seen in Figure 4b do not
vanish in the limit D → ∞. In that case one should also
allow for a modified scaling variable

ξδ = (y − δ)/(D + 1 − 2δ) (12)

with an unknown small (non-universal) parameter δ. Val-
ues of (D + 1 − 2δ)ρ(y)/fρ(ξδ) for D = 128 and three
different values of δ are plotted in Figure 4c. Similar re-
sults are obtained for other D. Combining them, we see
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Fig. 4. (a) Rescaled values of the monomer density, (D +
1) ρ(y) against ξ = y/(D + 1). Also plotted is the function
fρ(ξ) = 10.38 (ξ(1−ξ))4/3. (b) The same values (for D ≤ 160),
but divided by fρ(ξ). In this panel we do not display our data
for the largest lattices, since they are too noisy and would just
blur the picture. They do however show the same trend as the
data for D ≤ 160. (c) The data for D = 128 plotted against a
modified scaling variable, ξδ = (y − δ)/(D + 1 − 2δ), divided
by fρ(ξδ), for three different values of δ.
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Fig. 5. End-to-end distance divided by N , 〈x〉/N , plotted
against N for various values of D.

that best scaling (i.e. least dependence of D for small y)
is obtained for δ ≈ 0.02. For this value of δ we have

lim
y→0, D→∞

D7/3ρ(y)/y4/3 = (0.95 ± 0.02)× A . (13)

The large uncertainty in this estimate reflects the rather
steep slope of the central curve in Figure 4c as ξδ → 0
and the related uncertainty in the best estimate of δ [24].
If we accept equation (13), we obtain B = 2.04 ± 0.04,
which is in perfect agreement with [3,4]. Thus we have
two scenarios. Both imply very large corrections to scaling.
While the a priori simpler scenario would be in conflict
with the theoretical prediction, this prediction suggests
that indeed the second scenario is correct, which is our
preferred solution.

In Figure 5, we plot the end-to-end distance per
monomer 〈x〉/N versus N for various widths D. These
curves become horizontal as N → ∞, i.e. 〈x〉 increases
indeed linearly with N , limN→∞〈x〉/N = ∆x. In order to
find how ∆x scales with D, we plot it in Figure 6 on a
doubly logarithmic scale. As indicated by the dashed line,
it is fitted perfectly by the theoretical prediction [5]

〈x〉/N ∼ D1−1/ν = D−1/3 . (14)

We also estimated the density of wall contacts ρb (num-
ber of monomers at y = 1 or at y = D, divided by 2〈x〉).
For each fixed value of D, this becomes independent of N
as N → ∞. The asymptotic values, obtained from plots
similar to Figure 5, are also plotted in Figure 6. The full
line corresponds to the very simple prediction [5]

ρb ∼ D−2 (15)

which is independent of ν and indeed holds also for Gaus-
sian chains. Equation (15) can be easily understood, in
terms of the pressure exerted onto the wall:

ρb ∼ p =
Nf

〈x〉 ∼ D−1−1/ν+1/3 = D−2 . (16)
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Fig. 7. Rescaled values of the probability ρend(y) that the
chain end is at the distance y from a wall against ξ =
y/(D + 1). The topmost (interrupted) line is the function
gρ(ξ) = 2.85 (ξ(1 − ξ))25/48.

Finally, we show in Figure 7 the distribution ρend(y)
of chain ends. We see that ρend(y) scales for large D (and
for N � D1/ν , of course). Theoretically it is predicted
that [23]

ρend(y) ∼ y25/48 (17)

for y � D. We see that this is indeed verified (the full lines
in Figure 7 correspond to the prediction). But in contrast
to the monomer density which was described fairly well for
all y by the product of the power laws holding near the
two walls, the same definitely does not hold for ρend(y).
There the function gρ(ξ) = const. (ξ(1− ξ))25/48 does not
describe the behaviour away from the walls.

4 Summary

We have shown that we could simulate 2-d polymers, mod-
elled as self-avoiding walks, with chain length up to 125000
on strips of widths up to 320. This was possible using the
PERM algorithm with Markovian anticipation. The fact
that PERM gives by default very precise estimates of free
energies allowed us to measure precisely the forces exerted
onto the walls, by measuring how the critical fugacities
depend on the width of the strips. We verified all criti-
cal scaling laws predicted for this problem, including the
scaling of monomer and end point densities near the walls
and the scaling of the total pressure with chain length and
with strip width.

The only prediction for which we found possibly dis-
agreement is for the universal amplitude ratio B defined in
equation (9). A scenario based on some minimal assump-
tion about scaling functions and corrections to scaling
gives an estimate higher than the prediction by some fifty
standard deviations. But a different scenario, maybe less
plausible a priori but not very unlikely either, gives per-
fect agreement with the prediction. This illustrates again
that one should be very careful about corrections to scal-
ing, and that even very precise simulations do not always
give unique answers when their analysis is not guided by
a reliable theory.

Previous simulations of 3-d polymers between two par-
allel planar walls had indicated that also there the value
of B might be larger than predicted, but those simula-
tions had very large uncertainties. Using PERM we can
simulate fairly easily much longer chains with rather high
statistics. Results of such 3-d simulations will be given
elsewhere.

We thank Profs. Erich Eisenriegler and Ted Burkhardt for valu-
able discussions, and Walter Nadler for carefully reading the
manuscript.
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